18.3 Acid-Base Titrations

What can you tell me about this graph? Features/sections of the graph?

18.4.1

 Sketch the general shapes of graphs of pH against volume for titrations involving strong and weak acids and bases and explain their important features.

Sketch a graph

- Strong acid titrated with a strong base
 - .100 M strong monoprotic acid (HCl)
 - .100 M strong base (NaOH)

Strong Acid with Strong Base

Initial Concentration of Acid?

Important Features

- Equivalence Point: amount of acid = amount of base (aka point of inflection)
 - Point where the acid (or base) is just neutralized
 - What happens to the pH here and why?

Important Features

- Buffer Region: ½ equivalence point
 - When there is ½ of the base (or acid) needed to neutralize the acid. Very little change in pH
 - [HCl] = [NaCl]
 - $-pH_{solution} = pk_a$ of the acid (+/- 1 pk_a of the acid)

Weak Acid Titrated with Strong Base

- Ethanoic acid with NaOH
- pH at equivalence point?
- Look at the salt formed when all acid neutralized and apply salt hydrolysis!

Strong Acid with Weak Base

HCl with Ammonia

– *no buffer

Weak Acid and Weak Base

volume of acid added

• Yuck! strong add - strong base strong acid - weak base pН pН Conductivity 7 7 =highest at Equivalence volume of acid added volume of acid added point weak add - strong base weak acid - weak base pН pН 7 7

volume of acid added

Weak Base with Strong Acid

• ¹/₂ equivalence point

 $pOH = pK_b$

Which types have buffer regions?

- Explain.
- Need excess weak acid and its conjugate base salt.
 - Weak acid titrated with strong base
- Need excess weak base with its conjugate acid salt.
 - Weak base titrated with strong acid.

Practice IB

 The graph below indicates the pH change during the titration of 20.0 cm³ of 0.100 mol dm⁻³ of CH₃COOH(aq) with 0.100 mol dm⁻³ KOH(aq). From the graph, identify the volume of KOH(aq) and the pH at the equivalence point. (2)

Practice IB

- A 0.10 mol dm⁻³ ammonia solution is placed in a flask and titrated with a 0.10 mol dm⁻³ hydrochloric acid solution.
- a) When half the ammonia has been neutralized (the half-equivalence point), the pH of the solution is 9.25. Deduce the relationship between [NH₃] and [NH₄⁺] at the half-equivalence point. (1)
- b) Determine pK_b and K_b for ammonia based on the pH at the half-equivalence point. (3)
- c) Describe the significance of the half-equivalence point in terms of its effectiveness as a buffer. (1)