"Warm-up" Topic 7 Review

The Haber process enables the large-scale production of ammonia needed to make fertilizers.

The equation for the Haber process is given below.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

The percentage of ammonia in the equilibrium mixture varies with temperature.

- (i) Use the graph to deduce whether the forward reaction is exothermic or endothermic and explain your choice.(2)
- (ii) State and explain the effect of increasing the pressure on the yield of ammonia.(2)
- (iii) Explain the effect of increasing the temperature on the rate of reaction.(2)

(Total 6 marks)

(i) exothermic;

	Accept either of the following for the second mark. increasing temperature favours endothermic/reverse reaction; as yield decreases with increasing temperature;	2 max
(ii)	yield increases / equilibrium moves to the right / more ammonia; increase in pressure favours the reaction which has fewer moles of <u>gaseous</u> products;	2
(iii)	(rate increases because) increase in frequency (of collisions); increase in energy (of collisions); more colliding molecules with $E \ge E_a$;	2 max

[6]