Option A — Modern analytical chemistry

identification/detection/concentrations of metal/metal ions; [1] (b) X-Name: monochromatic light source; X Function: produces radiation/light of the same frequency/wavelength as is absorbed by the species (being detected); Y-Name:atomizer; **Y** – Function: converts liquid sample into small droplets / converts metal ions into atoms; Z-Name: monochromatic detector; **Z** – Function: detects radiation/light of the same frequency/wavelength absorbed / converts photons into electric current/signal; [6] and $oldsymbol{Z}$ correct except that "monochromatic" missed both times, penalize once only. Compound: CH₃-CH₂-CHO; Explanation: [1 max] only this compound would give 3 peaks / OWTTE; only this compound has H-atoms in 3 different chemical environments / OWTTE; only this compound has protons in ratio 3:2:1 in each environment / OWTTE only this compound would give a peak in the 9.4–10 ppm region / OWTTE; [2] triplet; (b) next to a carbon atom that is attached to two hydrogen atoms; [2] Apply ECF. CH₃COCH₃: singlet; no neighbouring H-atoms CH_2 =CH- CH_2OH : correct multiplicity and explanation for any peak. 1700–1750 cm⁻¹ (>C=O); (c) (i) [1] $1610-1680 \text{ cm}^{-1} (>C=C<) / 3200-3600 \text{ cm}^{-1} (-O-H);$ [1] $C_3H_6O^+$ and m/z = 58; $C_2H_5^+$ and m/z = 29; CHO^{+} and m/z = 29; CH_3^+ and m/z = 15; [2 max] Penalize missing + sign once only.

Option A — Modern analytical chemistry

- A1. (a) (i) (2-)methylpropan-2-ol; the (H atoms in the three) –CH₃ groups are responsible for the peak at 1.3 ppm; the –OH hydrogen atom is responsible for the peak at 2.0 ppm;

 Accept explanation with suitable diagram.

 [3]
 - (ii) (2-)methylpropan-1-ol; the first peak (at 0.9 ppm) is due to the (H atoms in the) two -CH₃ groups (bonded to the second carbon atom) / (CH₃)₂CHCH₂OH; the peak at 3.4 ppm is due to the (H atoms in the) -CH₂- group / (CH₃)₂CHCH₂OH; both of the peaks are split into a doublet as there is one H atom bonded on the adjacent carbon atom / OWTTE;

 Accept explanations with suitable diagram.
 - (b) (i) butan-1-ol and butan-2-ol;

74: M⁺ / C₄H₁₀O⁺ / CH₃CH₂CH₂CH₂OH⁺ and CH₃CH₂CH(OH)CH₃⁺;

59: $C_3H_7O^+/(M-CH_3)^+/CH_2CH_2CH_2OH^+$ and $CH_2CH(OH)CH_3^+/CH_3CH_2CH(OH)^+$;

45: C₂H₅O⁺/(M – C₂H₅)⁺/CH₂CH₂OH⁺ and CH(OH)CH₃⁺; [4] Accept explained answers instead of formula

- (ii) butan-1-ol; $CH_2OH^+/(M-C_3H_7)^+$; [2] Penalize missing + signs once only in parts (b) (i) and (ii).
- (c) they all contain O–H;
 they all contain C–H;
 they all contain C–O;

 Award [Imax] for the same functional groups/bonds.

 [2 max]