IB Chemistry II 16.2 P2 Practice

1. Consider the following graph of ln k against $\frac{1}{T}$ (temperature in Kelvin) for the second order decomposition of N₂O into N₂ and O.

$$N_2O \rightarrow N_2 + O$$

(a) State how the rate constant, *k* varies with temperature, *T*.

- (b) Determine the activation energy, $E_{\rm a}$, for this reaction.
- (c) The rate expression for this reaction is rate = $k [N_2O]^2$ and the rate constant is 0.244 dm³ mol⁻¹ s⁻¹ at 750 °C.

A sample of N_2O of concentration 0.200 mol dm⁻³ is allowed to decompose. Calculate the rate when 10 % of the N_2O has reacted.

(2) (Total 6 marks)

(3)

(1)

- (a) k increases with increase in T / k decreases with decrease in T;
 Do not allow answers giving just the Arrhenius equation or involving ln k relationships.
 - (b) gradient = $-E_a/R$; $-30000 \text{ (K)} = -E_a/R$; Allow value in range -28800-31300 (K). $E_a = (30000 \times 8.31 =) 2.49 \times 10^5 \text{ J mol}^{-1} / 249 \text{ kJ mol}^{-1}$;

 $E_a = (50000 \times 8.51 -) 2.49 \times 10^{-1}$ find -7249 KJ mol⁻¹. Allow value in range 240–260 kJ mol⁻¹. Allow [3] for correct final answer.

(c) $0.9 \times 0.200 = 0.180 \text{ (mol } \text{dm}^{-3}\text{)};$

rate = $(0.244 \times (0.180)^2 =) 7.91 \times 10^{-3} \text{ mol dm}^{-3} \text{ s}^{-1}$; 2 Award [2] for correct final answer. Award [1 max] for either $9.76 \times 10^{-3} \text{ mol dm}^{-3} \text{ s}^{-1}$ or $9.76 \times 10^{-5} \text{ mol dm}^{-3} \text{ s}^{-1}$.

[6]

1

3