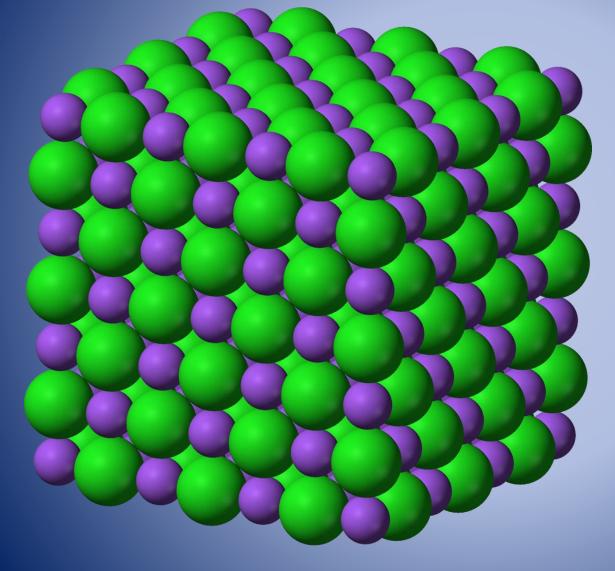
Warm-up 2/24

1. Which reaction has an enthalpy change equal to a standard enthalpy change of formation, ΔH_f^{Θ} ? All reactions occur at 298 K and 1.01 × 10⁵ Pa.

- A. $C_4H_{8(g)} + H_2O_{(g)} \rightarrow C_4H_9OH_{(I)}$
- B. $4CO_{2(g)} + 5H_2O_{(g)} \rightarrow C_4H_9OH(I) + O_2(g)$
- C. $4C(s) + 5H_2(g) + 1/2 O_2(g) \rightarrow C_4H_9OH(I)$
- D. $8C(s) + 10H_2(g) + O_2(g) \rightarrow 2C_4H_9OH(I)$

 What is the IB definition of Ionization Energy, ΔH_{IE}? Standard enthalpy change that occurs on the removal of <u>1 mole</u> of electrons from <u>1 mole</u> of atoms or cations in the <u>gaseous phase</u>.

• Obtain a data booklet and find enthalpies of formation, combustion, first ionization energy and electron affinity.


A Few Reminders

IA due 11:59 pm
–Copy in Hapara folder
–OFFICIAL copy to me.
•Hard copy OR
•Email me copy (Word)

Test revisions due by end of next Friday
 Don't wait until the last minute!

15.1 Born-Haber Cycle

Now to Ionic Compounds-yipee!!!

Describe the process of forming ionic compounds, starting with elements in their standard state.

Lattice Enthalpy

Enthalpy change that occurs when <u>1 mole</u> of a solid ionic crystal is broken into its <u>ions</u> in the <u>gaseous state</u>.

 $MX_{(s)} \rightarrow M^+_{(g)} + X^-_{(g)}$

- Endothermic or exothermic?
- If Standard Lattice Enthalpy what does this mean?
- Can be the opposite as well....
- Data booklet table 18

Standard Enthalpy Change of Atomization

 Enthalpy required to produce 1 mole of gaseous atoms of an element from the element in its standard state.

- $Na_{(s)} \rightarrow Na_{(g)} \Delta H^{o}_{at} = +103 \text{ kJ/mol}$
- $\frac{1}{2} \operatorname{Cl}_{2(g)} \rightarrow \operatorname{Cl}_{(g)} \Delta H^{o}_{at} = ?$

Electron Affinity

- Enthalpy change when <u>one mole</u> of <u>gaseous</u> <u>atoms</u> or anions gains 1 mole of electrons.
- Endothermic or exothermic?
- $CI + e^- \longrightarrow CI^- \quad \Delta H_{ea}^\circ = -349 \text{ KJ/mol}$
- $O^- + e^- \longrightarrow O^{2-}$ $\Delta H_{ea}^{\circ}(2^{nd}) = +753 \text{ KJ/mol}$

Properties of Ions and Lattice Energy

- Remember it's all about pulling the oppositely charged ions apart.
- What types of ions would have a higher lattice energy?
 - Size-bigger or smaller?
 - Charge-larger or smaller?
- Data booklet (Table 18) shows endothermic values.
 - If ionic radius increases, lattice enthalpies become less positive (i.e. it will take less energy to break the bonds)

Equation Showing Properties and Lattice Enthalpies

Lattice Enthalpy ∝ <u>(charge on positive ion) x (charge on negative ion)</u> Sum of the ionic radii

Warm-up 2/27

- 1. Which equation corresponds to the lattice enthalpy for silver iodide, AgI?
- A. $AgI(s) \rightarrow Ag(s) + I(g)$
- B. $Agl(s) \rightarrow Ag(s) + I_2(g)$
- C. $AgI(s) \rightarrow Ag^{+}(aq) + I^{-}(aq)$
- D. AgI(s) \rightarrow Ag⁺(g) + I⁻(g)

Schedule

Thursday
Unavailable after school tomorrow
Next Friday = Topic 5/15 (and 16.2) Exam
You have through this Friday to complete revisions on our last exam

Born-Haber Cycle

- Shows process of going from elements in their gaseous state (or standard state) to a crystal lattice.
 - Requires many steps
 - Hess's cycle

Construct a Born-Haber Cycle #1

Make NaCl(s) from standard state elements

- Na_(s) \rightarrow Na_(g) $\Delta H^{o}_{at} = +103 \text{ kJ/mol}$

Construct a Born-Haber Cycle #2

- Construct Sodium Oxide from standard state elements given:
- $\Delta H^{\circ}_{f \text{ Na2O}} = -414 \text{ kJ/mol}$
- ΔH°_{atom} Na = 103 kJ/mol
- Use the data booklet to find the rest and solve for the Lattice Enthalpy of Na₂O

HW 15.1 WS

