IB Chemistry II Study Worksheet 18.2 KEY

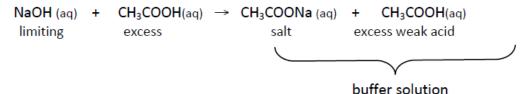
- (i) NH₃ + NH₄Cl (weak base + salt of weak base and strong acid); (1)
 (or HCl + NH₃ strong acid + excess weak base)
 - (ii) pH changes very little / most of the acid is neutralized by the base ; (1) equation ; (1)

 $H^+ + OH^- \rightarrow H_2O$

If a <u>small amount</u> of H⁺ from a strong acid is added they combine with OH⁻ ions to form water, decreasing the concentration of OH- ions causing the pH to increase. Alternatively, according to Le Chataliers Principle, the position of equilibrium will shift to the right to replace the OH⁻ ions that have been used up causing the pH to remain unchanged.

1.

2. B


- 3.
- a) A **buffer solution** is a solution which will resist changes in pH; (1) when a <u>small amount</u> of a strong acid or base is added; (1) (do not accept pH does not change)
- b)
- (i) not a buffer solution ; (1) after reaction the mixture contains - 0.10 mol NH₄Cl and 0.10 mol HCl / NH3 needs to be in excess to make a basic buffer; (1)
- (ii) buffer solution ; (1) after reaction the mixture contains - 0.10 mol NH_3 and 0.10 mol NH_4Cl ; (1)

4. B

If you add more salt (conjugate base) the buffer solution becomes more basic & pH will become closer to 14. If you add more acid the buffer solution becomes more acidic, the pH will become closer to 1.

5.

Fewer moles of NaOH than CH3COOH ;(1)CH3COOH should be in excess so the final solution contains both CH3COO⁻ and(1)CH3COOH ;(1)

6.

Calculate the pH of a mixture of 50cm^3 of ammonia solution of concentration 0.10 moldm⁻³ and 50cm^3 of hydrochloric acid solution of concentration 0.050 mol dm⁻³. pK_b (NH₃) = 4.75

n (HCl) = схv 0.050 x (50 / 1000) = 0.0025 mol = $0.0025 \text{ mol dm}^{-3}$ = $n(NH_3)=$ схv = 0.10 x (50 /1000) 0.0050 mol = $0.0050 \text{ mol dm}^{-3}$; =

NH₃ is in excess

 $n(NH_3)$ remaining = 0.0050 - 0.0025 = 0.0025 mol = 0.0025 mol dm⁻³

From mole ratio in the equation assume $[NH_4^+] = [NH_3] = 0.0025$ mol dm⁻³ because they are in a 1:1 mole ratio ;

¢	$NH_4^+_{(aq)}$	+	OH (aq)
	Salt		
	0.0025		
	⇔	Salt conjugate acid	Salt conjugate acid

$$K_b = 10^{-pKb} = 10^{-4.75} = 1.78 \times 10^{-5}$$

$$K_{b} = \underbrace{[NH_{4}^{+}] \times [OH^{-}]}_{[NH_{3}]}$$

$$[OH^{-}] = \underbrace{K_{b} \times [NH_{3}]}_{[NH_{4}^{+}]}$$

$$[OH^{-}] = 1.78 \times 10^{-5} \times 0.0025$$

$$\underbrace{[OH^{-}]}_{0.0025}$$

$$[OH^{-}] = 1.78 \times 10^{-5} \text{ moldm}^{-3} ;$$

$$pOH = 4.75$$

$$pH = 9.25 \text{ (allow 9.2 to 9.3) ;}$$

7.

 $CH_3COOH_{(aq)} \Leftrightarrow H^+_{(aq)} + CH_3COO^-_{(aq)}$ weak acid Salt conjugate base $K_{a} = [H^{+}] \times [CH_{3}COO^{-}]$ $[CH_{3}COOH]$ $[CH_{3}COOH] = 0.0500 \text{ mol dm}^{-3}$ $[CH_3COO^{-}] = 0.100 \text{ mol dm}^{-3}$ $K_a = 1.74 \times 10^{-5}$ $[H+] = K_a \times CH_3COOH ;$ CH_3COO^{-} $[H+] = \frac{1.74 \times 10^{-5}}{0.100} \times \frac{0.0500}{0.100}$ $[H+] = 8.70 \times 10^{-6} \text{ mol dm}^{-3};$ $pH = -\log_{10}[H^+]$ $= -\log_{10} 8.70 \times 10^{-6}$ = 5.06; (3SF) (accept answer in the range 5.0 to 5.1)

- 8. A. Buffer solution: $CH_3COOH \leftarrow \rightarrow CH_3COO- + H^+$
 - → If an acid is added, the H+ will bond with CH₃COO-, thus preventing additional "free" H+ ions from decreasing the pH of the solution.
 - B. (Similar to example #2 from PowerPoint) pH = 4.46