IB Chemistry II Study Worksheet 18.2 Buffer Solutions

1. (i) Identify two substances that can be added to water to form a basic buffer solution. (ii) Describe what happens when a small amount of acid solution is added to the buffer solution described in (i). Use an equation to support your answer.

2. A buffer solution can be prepared by adding which of the following to 50cm₃ of 0.10 moldm³ solution of CH₃COOH?

I. 50cm₃ of 0.10 moldm-₃ solution of CH₃COONa

II. 25cm3 of 0.10 moldm-3 solution of NaOH

III. 25cm₃ of 0.10 moldm-₃ solution of NaCl

A. I only

B. I and II only

- C. II and III only
- D. I, II and III only

3. a) State what is meant by a buffer solution. b) State and explain whether each of the following solutions will form a buffer solution:

(i) A 1.0 dm3 solution containing 0.10 mol NH3 and 0.20 mol HCl

(ii) A 1.0 dm_3 solution containing 0.20 mol NH_3 and 0.10 mol HCl

IB Chemistry II Study Worksheet 18.2 Buffer Solutions

2. (i) Identify two substances that can be added to water to form a basic buffer solution. (ii) Describe what happens when a small amount of acid solution is added to the buffer solution described in (i). Use an equation to support your answer.

2. A buffer solution can be prepared by adding which of the following to $50cm_3$ of 0.10 moldm³ solution of CH₃COOH?

I. 50cm₃ of 0.10 moldm-₃ solution of CH₃COONa

II. 25cm3 of 0.10 moldm-3 solution of NaOH

III. $25cm_3$ of 0.10 moldm-3 solution of NaCl

A. I only

B. I and II only

C. II and III only

D. I, II and III only

3. a) State what is meant by a buffer solution. b) State and explain whether each of the following solutions will form a buffer solution:

(i) A 1.0 dm $_3$ solution containing 0.10 mol NH $_3$ and 0.20 mol HCl

(ii) A 1.0 dm_3 solution containing 0.20 mol NH_3 and 0.10 mol HCl

4. A buffer solution that contains ethanoic acid and sodium ethanoate has a pH=4.0. How could the pH of this solution be changed to 5.0?

- A. Dilute 10cm₃ of the solution to 100cm₃
- B. Add more sodium ethanoate
- C. Add more ethanoic acid
- D. Add equal moles of ethanoic acid and sodium ethanoate

5. Give the relative amounts of NaOH and CH₃COOH needed to form a buffer solution and outline your reasoning. [no calculations necessary].

6. Calculate the pH of a mixture of 50cm³ of ammonia solution of concentration 0.10 moldm³ and 50cm³ of hydrochloric acid solution of concentration 0.050 mol dm³. pK_b (NH₃) = 4.75

7. Calculate the pH of a buffer solution containing 0.0500 moldm⁻³ of ethanoic acid (Ka = 1.74×10^{-5}) and 0.100 mol dm⁻³ of sodium ethanoate.

- 8. 60 cm³ of 0.100 mol dm⁻³ CH₃COOH is placed in a beaker and mixed with 20 cm³ of 0.100 mol dm⁻³ KOH.
 - a) Explain, with the help of an equation, how the solution formed acts as a buffer solution when a small quantity of acid is added to it.

b) Calculate the pH of the buffer solution. (K_a of CH₃COOH = 1.74 x 10-5 mol dm-3)

4. A buffer solution that contains ethanoic acid and sodium ethanoate has a pH=4.0. How could the pH of this solution be changed to 5.0?

- A. Dilute $10cm_3$ of the solution to $100cm_3$
- B. Add more sodium ethanoate
- C. Add more ethanoic acid
- D. Add equal moles of ethanoic acid and sodium ethanoate

5. Give the relative amounts of NaOH and CH₃COOH needed to form a buffer solution and outline your reasoning. [no calculations necessary].

6. Calculate the pH of a mixture of 50cm³ of ammonia solution of concentration 0.10 moldm⁻³ and 50cm³ of hydrochloric acid solution of concentration 0.050 mol dm⁻³. pK_b (NH₃) = 4.75

7. Calculate the pH of a buffer solution containing 0.0500 moldm³ of ethanoic acid (Ka = 1.74×10^{5}) and 0.100 mol dm³ of sodium ethanoate.

- 8. 60 cm³ of 0.100 mol dm³ CH₃COOH is placed in a beaker and mixed with 20 cm³ of 0.100 mol dm³ KOH.
 - a) Explain, with the help of an equation, how the solution formed acts as a buffer solution when a small quantity of acid is added to it.

b) Calculate the pH of the buffer solution. (K_a of CH₃COOH = 1.74 x 10-5 mol dm-3)