Narm-up 4/30

1. Which compounds can be mixed together as solutions of equal volume and concentration to form
a buffer solution?

- A. Nitric acid and potassium hydroxide
- B. Nitric acid and potassium nitrate
- C. Propanoic acid and potassium hydroxide
- D. Propanoic acid and potassium propanoate

2. Determine the pH of the solution resulting when 100 cm^{3} of $0.50 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$ is mixed with $200 \mathrm{~cm}^{3}$ of $0.10 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})$.

18.3 Salt Hydrolysis

What is a salt?

- lonic compound comprised of cations from a base (i.e. $\mathrm{Na}+$ from NaOH) and anions from an acid (i.e. Cl - from HCl).
- These completely dissociate in aqueous solutions.
- Can have acid/base properties

18.3.1

- Deduce whether salts form acid, alkaline or neutral aqueous solutions.

Sample Problem \# 1

- For each of the following salts, determine relative pH of aqueous solution:

1) KNO_{3} 2) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ 3) $\mathrm{HCO}_{2} \mathrm{Na}$
2) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{NH}_{4}^{+}$
*Determine where each cation and ion came from \rightarrow the pH goes toward the stronger component

Sample Problem \#2

- Analyze $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ in an aqueous solution.

Sample Problem \#3

- Analyze $\mathrm{HCO}_{2} \mathrm{Na}$ in an aqueous solution.

Sample Problem \#4

- Explain why Al^{3+} acts as an acid in water, but Mg^{2+} and Na^{+}do not.
- $\mathrm{Be}^{2+}, \mathrm{Fe}^{3+}$

