Warm-up 4/18

1. Define the terms *acid* and *base* according to the Brønsted-Lowry theory. Distinguish between a weak base and a strong base. State **one** example of a weak base.(3)

2. Weak acids in the environment may cause damage. Identify a weak acid in the environment **and** outline **one** of its effects. **(2)**

Acids on the Environment

 (ii) sulfurous acid/H₂SO₃; corrodes marble/limestone buildings/statues / leaching in soils / harms/kills plants;

OR

nitrous acid/HNO₂;

corrodes marble/limestone buildings/statues / leaching in soils / harms/kills plants;

- OR
- carbonic acid/H₂CO₃;
 corrodes marble/limestone buildings/statues / acidification of lakes;2
- Do not allow oxides (e.g. CO₂ etc.).
 Do not accept just corrodes or damages.

Additional Practice Problem

• Explain, using an equation, whether a solution of 0.10 mol dm⁻³ FeCl₃(aq) would be acidic, alkaline or neutral.

```
• acidic; [Fe(H_2O)_6]^{3+} [Fe(H_2O)_5(OH)]^{2+} + H^+/ [Fe(H_2O)_6]^{3+} + H_2O [Fe(H_2O)_5(OH)]^{2+} + H_3O^+; 2 Accept equations indicating the formation of [Fe(H_2O)_4(OH)_2]^+ [Fe(H_2O)_3(OH)_3] [Fe(H_2O)_2(OH)_4]^- Do not penalize \rightarrow.
```

18.1 CALCULATIONS INVOLVING ACIDS AND BASES

Write the equilibrium equation for the dissociation of water:

$$H_2O_{(I)}$$
 $H^+_{(aq)} + OH^-_{(aq)} \Delta H = + 57 \text{ kJ/mol}$ $K_c = ?$ $K_w = \text{dissociation constant of this equation}$ $At STP: [OH-] = [H+] = 1.00 \times 10^{-7} \text{ units?}$ $K_w = (1.00 \times 10^{-7}) \times (1.00 \times 10^{-7}) = 1.00 \times 10^{-14}$

What happens as temperature increases?

- Higher temperature = shifts to right
- More H+
- Lower pH

Ex:
$$50^{\circ}$$
C [H+] = [OH-] = 3.05×10^{-7}

Decrease in temperature?

$$H_2O_{(I)}$$
 $H^+_{(aq)} + OH^-_{(aq)} \Delta H = + 57 \text{ kJ/mol}$

Pause for...Some key relationships

$$[H+] = 10^{-pH}$$

$$[OH-] = 10^{-pOH}$$

•
$$pK_w = -logK_w$$

•
$$pK_a = -logK_a$$

•
$$pK_b = -logK_b$$

$$K_w = 10^{-Kw}$$

$$K_a = 10^{-Ka}$$

$$K_{b} = 10^{-Kb}$$

• @ STP:
$$[H+] \times [OH-] = 10^{-14}$$

pH + pOH = pK_w = 14

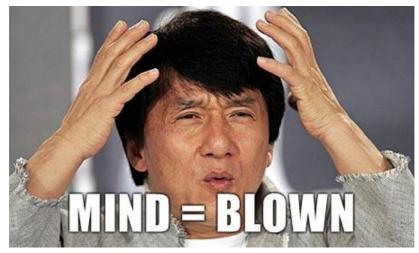
Pure water at 50°C

• 50° C [H+] = [OH-] = 3.05×10^{-7}

pH of 7 is neutral for a pure water solution only at 25°C!

- pH = ?
- 6.5

But this is pure water....What is this telling us about


acidity basicity?

Neutral solutions?

• [H+] = [OH-]

Acidic: [H+] > [OH-]

• Basic: [H+] < [OH-]

• $K_w = 5.48 \times 10^{-14} M^2 @ 50^{\circ} C$

Find:

[H+]

[OH-]

рН

рОН

At STP: [H+] = 0.001M

Find:

- pH
- pOH
- [OH-]

Homework – Grey Textbook!

• Pg. 711

16.30, 16.33, 16.39, 16.41

Warm-up 4/23

• Determine the pH of the solution resulting when 100 cm³ of 0.50 mol dm⁻³ HCl(aq) is mixed with 200 cm³ of 0.10 mol dm⁻³ NaOH(aq).

18.1.4 Weak Acids and Bases

State an equation of any weak acid or base in water.

Weak Acid:

$$HA_{(aq)} \longrightarrow H^+(aq) + A^-(aq)$$

$$K_a = [H+][A-]/[HA]$$

How does K_a relate to strength?

Ethanoic Acid

Write the equation and Ka expression for ethanoic acid in an aqueous solution.

- Ka = $1.74 \times 10^{-5} \text{ mol dm}^{-3}$
 - Does Ka change with temperature?
- $pK_a = -logK_a$
 - 4.76
- Similar relationship as pH and concentration.
- Larger Ka = stronger acid
- Smaller pKa = stronger acid

Weak Bases

Always need to show with water in the equation

• B +
$$H_2O$$
 BH+ + OH-

- Write the K_b expression
- Write the equation for NH₃ in water.
- Write the Kb expression for this reaction.
- Strong bases = large K_b, small pK_b

• Give the K_b expression for phenylamine.

18.1.5-solving problems

- $K_a \times K_b = K_w$ *Works for conjugate acid/base pairs
- Why? Derivation
- Write out K_a and K_b expressions for the dissociations of generic weak acid (HA) and weak base (A-)

Remember pKa + pKb = pKw = 14 @ STP

• The Ka for the acid HX is 0.01. Find Kb for the conjugate base, X⁻ (@STP).

What is the value of pKb for:

• $CH_3COO^- + H_2O \longleftrightarrow CH_3COOH + OH^-$

- Ammonia pKb = 4.75
- Methylamine pKb = 3.34
- Which conjugate acid of the above base is the strongest?
- Show its dissociation in water and give a value for pKa.

18.1.5 determining relative strengths

Rank these 1 M acids, weakest 1st

	рКа	Ka	рН	[H+]
НА	4			
НВ		10 ⁻⁶		
HC			4	
HD				10 ⁻⁵

Rank these bases, weakest first

	pKb	Kb
methylamine	3.34	
dimethylamine	3.27	
Trimethylamine	4.20	

Explain this trend, discussing relative dissociation of these bases

Bookwork – alternative text

#1, 3, 4, 5, 6, 7, 10

- Be ready for a quiz on Monday!
- All of topic 8 and 18.1