Warm-up 4/18

1. Define the terms acid and base according to the Brønsted-Lowry theory. Distinguish between a weak base and a strong base. State one example of a weak base.(3)
2. Weak acids in the environment may cause damage. Identify a weak acid in the environment and outline one of its effects. (2)

Acids on the Environment

- (ii) sulfurous acid $/ \mathrm{H}_{2} \mathrm{SO}_{3}$; corrodes marble/limestone buildings/statues / leaching in soils / harms/kills plants;

OR

nitrous acid/ HNO_{2};
corrodes marble/limestone buildings/statues / leaching in soils / harms/kills plants;

- OR
- carbonic acid $/ \mathrm{H}_{2} \mathrm{CO}_{3}$;
corrodes marble/limestone buildings/statues / acidification of lakes;2
- Do not allow oxides (e.g. CO_{2} etc.).

Do not accept just corrodes or damages.

Additional Practice Problem

- Explain, using an equation, whether a solution of 0.10 mol $\mathrm{dm}^{-3} \mathrm{FeCl}_{3}(\mathrm{aq})$ would be acidic, alkaline or neutral.
- acidic;
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{2+}+\mathrm{H}^{+} /\right.$
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{H}_{2} \mathrm{O}\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}+\mathrm{H}_{3} \mathrm{O}+2$
Accept equations indicating the formation of
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right]^{+}$
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}\right]$
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{OH})_{4}\right]$
Do not penalize \rightarrow.

18.1 CALCULATIONS INVOLVING ACIDS AND BASES

Write the equilibrium equation for the dissociation of water:

$\mathrm{H}_{2} \mathrm{O}_{()}$
$\longleftarrow \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})} \Delta \mathrm{H}=+57 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{K}_{\mathrm{c}}=$?
$\mathrm{K}_{\mathrm{w}}=$ dissociation constant of this equation
At STP: $[\mathrm{OH}-]=[\mathrm{H}+]=1.00 \times 10^{-7}$ units?
$\mathrm{K}_{\mathrm{w}}=\left(1.00 \times 10^{-7}\right) \times\left(1.00 \times 10^{-7}\right)=1.00 \times 10^{-14}$

What happens as temperature increases?

- Higher temperature = shifts to right
- More H+
- Lower pH

Ex: $50^{\circ} \mathrm{C}[\mathrm{H}+]=[\mathrm{OH}-]=3.05 \times 10^{-7}$

Decrease in temperature?
$\mathrm{H}_{2} \mathrm{O}_{(1)}$

$$
\mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-} \Delta \mathrm{H}=+57 \mathrm{~kJ} / \mathrm{mol}
$$

Pause for...Some key relationships

- $\mathrm{pH}=-\log [\mathrm{H}+]$
$[\mathrm{H}+]=10-\mathrm{pH}$
- $\mathrm{pOH}=-\log [\mathrm{OH}-]$
$[\mathrm{OH}-]=10-\mathrm{pOH}$
- $\mathrm{pK}_{\mathrm{w}}=-\log \mathrm{K}_{\mathrm{w}}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{w}}=10-\mathrm{Kw} \\
& \mathrm{~K}_{\mathrm{a}}=10^{-\mathrm{Ka}} \\
& \mathrm{~K}_{\mathrm{b}}=10-\mathrm{Kb}
\end{aligned}
$$

- $\mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}$
- $\mathrm{pK}_{\mathrm{b}}=-\log \mathrm{K}_{\mathrm{b}}$
- @ STP: $[\mathrm{H}+] \times[\mathrm{OH}-]=10^{-14}$

$$
\mathrm{pH}+\mathrm{pOH}=\mathrm{pK}_{\mathrm{w}}=14
$$

Pure water at $50^{\circ} \mathrm{C}$

- $50^{\circ} \mathrm{C}[\mathrm{H}+]=[\mathrm{OH}-]=3.05 \times 10^{-7}$
pH of 7 is neutral for a pure water solution only at $25^{\circ} \mathrm{C}$!
- $\mathrm{pH}=$?
- 6.5
- But this is pure water....What is this telling us about acidity basicity?
Neutral solutions?
- $[\mathrm{H}+]=[\mathrm{OH}-]$
- Acidic: $[\mathrm{H}+]>[\mathrm{OH}-]$
- Basic: $[\mathrm{H}+]<[\mathrm{OH}-]$

Sample Problem \#1

- $\mathrm{K}_{\mathrm{w}}=5.48 \times 10^{-14} \mathrm{M}^{2} @ 50^{\circ} \mathrm{C}$

Find:
[H+]
[OH-]
pH
pOH

Sample Problem \#2

- At STP: $[\mathrm{H}+]=0.001 \mathrm{M}$

Find:

- pH
- pOH
- [OH-]

Homework - Grey Textbook!

- Pg. 711
\# 16.30, 16.33, 16.39, 16.41

