Energetics Equations

Calorimetry	$\Delta H = m c \Delta T$
Hess's Law	$\Delta H_1 = \Delta H_2 + \Delta H_3$
Bond Enthalpy	$\Delta H_{RXN}^{\circ} = \Sigma BE_{bonds broken} - \Sigma BE_{bonds formed}$
Enthalpy of format	tion $\Delta H_{rxn} = \Sigma \Delta H_f^{\circ}_{products} - \Sigma \Delta H_f^{\circ}_{reactants}$ The ΔH_f° of an element in its standard state is zero.
Born-Haber Cycles	$\Delta H_{at(m)}^{\circ} + \Delta H_{at(nm)}^{\circ} + \Delta H_{IE}^{\circ} + \Delta H_{EA}^{\circ} + \Delta H_{latt}^{\circ} = \Delta H_{f}^{\circ}$
Entropy (Disorder)	$\Delta S^{\circ} = \Sigma S^{\circ}$ (products) — ΣS° (reactants)
Gibb's Free Energy	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
	$\Delta G^{\circ} = \Sigma \Delta G_f^{\circ}$ (products) $- \Sigma \Delta G_f^{\circ}$ (reactants)
	The ΔG_f° of an element in its standard state is zero.
Standard Thermochemical Conditions	

- Temperature 25 C, 298 K
- Pressure 101.3 kPa, 1 atm, 760 mmHg