Hess's Law

- Total enthalpy change on converting a given set of reactants to a particular set of products is constant.
- First Law of Thermodynamics
- State Function

Hess's Law

 $\Delta H = H_{\text{products}} - H_{\text{reactants}}$

ΔH is independent of the reaction pathway.

Hess's Law

∆H for an overall reaction is equal to the sum of the enthalpy changes for the individual steps.

 $\Delta H_1 = \Delta H_2 + \Delta H_3$

CH₄ (g) + 2O₂ (g) →CO₂ (g) + 2H₂O (I) $\Delta H = -890$ KJ

Example

Overall Reaction

NaHCO₃ (s) + HCl (aq) \rightarrow NaCl (aq) + CO₂ (g) + H₂O (l) $\Delta H_1 = ?$

• Steps

2NaHCO₃ (s) \rightarrow Na₂CO₃ (aq) +CO₂ (g)+ H₂O (l) ΔH_2 = +90 kJmol⁻¹

 $Na_2CO_3(aq) + 2HCI(aq) \rightarrow 2NaCI(aq) + CO_2(g) + H_2O(I)$ $\Delta H_3 = -370 \text{ kJmol}^{-1}$

Sample Problem 2

• Given the following steps C (s) + $O_2(g) \rightarrow CO_2(g)$ H₂(g) + ½ $O_2(g) \rightarrow H_2O(I)$ C₂H₄(g) + 3O₂(g) $\rightarrow 2CO_2(g) + 2H_2O(I)$ $\Delta H = -287 \text{ KJ}$ $\Delta H = -1416 \text{ KJ}$

Calculate ΔH for 2C(s) + 2H₂(g) \rightarrow C₂H₄(g)

Bonds and Enthalpy Cycles

The bond-breaking and bond-making can be represented in an enthalpy cycle.

Enthalpy Cycles

The **Enthalpy Cycle** provides an alternative route for the combustion of 1 mole of methanol. The methanol is first converted to the elements from which it was formed (the reverse of the enthalpy of formation), and these are then burned to form the products (enthalpy of combustion).

Ms. Hall's Example

Clockwise arrows must equal counterclockwise arrow

Construct a Hess Cycle

	ΔH° _c (kJ mol ⁻¹)
C ₆ H ₆ (I)	-3267
C(s)	-394
H ₂ (g)	-286

Want to form benzene (C_6H_6) from C and H.