Warm-up

- "Determining relative strengths" table

18.3 BUFFER SOLUTIONS

What is a Buffer Solution?

- Definition: solution that resists a change in pH when a small amount of an acid or base is added to them.
 Made of:
- weak acid and its conjugate base from a salt
 - Ex: CH₃COOH/CH₃COONa
- Weak base and its conjugate acid from a salt
 - Ex: NH₃/NH₄Cl

Acidic Buffer Solutions

- $CH_3COOH \leftrightarrow CH_3COO- + H^+$
- Get a significant amount of CH₃COO- from the sodium ethanoate.
- Describe what happens:
 - a) When a small amount of HCl is added
 - b) When a small amount of NaOH is added

Basic Buffer Solution

- $NH_3 + H_2O \leftrightarrow NH_4^+ + OH^-$
- Get significant amount of NH₄⁺ from ammonium chloride salt
- Describe what happens:
 - a) When a small amount of HCl is added
 - b) When a small amount of NaOH is added

Making Buffer Solutions

- Most useful when concentration of acid and base are equal
- And pH = pKa
- Can add acid/base and its salt or acid/base and small amount of strong base/strong acid

Example 1

 Solid sodium ethanoate is added to 0.20 mol dm⁻³ ethanoic acid until the concentration of the salt is 0.050 mol dm⁻³. Given that the K_a for ethanoic acid is 1.74 x 10⁻⁵ mol dm⁻³. Calculate the pH of the buffer solution formed.

Warm-up 5/1

• Will 30. cm³ of 0.100 mol dm⁻³ CH₃COOH (K_a = 1.74 x 10^{-5} mol dm⁻³) and 10. cm³ of 0.100 mol dm⁻³ NaOH produce a buffer solution and if so what will be its pH?

18.1 Problems (HO) –Questions?

- This week:
- Tuesday gone at 3
- Gone Friday
- Please have your Energy Quiz A and B revisions completed by next Thursday (P3 exam)

Practice Problems

Buffer solutions resist small changes in pH. A phosphate buffer can be made by dissolving NaH_2PO_4 and Na_2HPO_4 in water, in which NaH_2PO_4 produces the acidic ion and Na_2HPO_4 produces the conjugate base ion.

(i)Deduce the acid and conjugate base ions that make up the phosphate buffer and state the ionic equation that represents the phosphate buffer. (3)

(ii)Describe how the phosphate buffer minimizes the effect of the addition of a strong base, $OH^{-}(aq)$, to the buffer. Illustrate your answer with an ionic equation.(2)

(iii) Describe how the phosphate buffer minimizes the effect of the addition of a strong acid, $H^+(aq)$, to the buffer. Illustrate your answer with an ionic equation.(2)

IB Rubric

- (i) Acid: H₂PO₄⁻; (Conjugate) base: HPO₄²⁻; No mark for NaH₂PO₄ or Na₂HPO₄.
- H₂PO₄⁻(aq) H⁺(aq) + HPO₄²⁻(aq);
 Accept reverse equation or reaction with water.
 Ignore state symbols, but equilibrium sign is required.
 Accept OH⁻ (ions) react with H⁺ (ions) to form H₂O. 3
- (ii) strong base/OH⁻ replaced by weak base (H₂PO₄²⁻, and effect minimized) / strong base reacts with acid of buffer / equilibrium in (i) shifts in forward direction;

OH⁻(aq) + H₂PO₄⁻(aq) \rightarrow H₂O(I) + HPO₄²⁻(aq); Ignore state symbols, accept equilibrium sign. Accept OH⁻ added reacts with H⁺ to form H₂O. 2

 (iii) strong acid/H⁺ replaced by weak acid (H₂PO₄⁻, and effect minimized) / strong acid reacts with base of buffer / equilibrium in (i) shifts in reverse direction; H⁺(aq) + HPO₄²⁻(aq) → H₂PO₄⁻(aq); Accept reaction with H₃O⁺. Ignore state symbols. 2

Textbook Problems

• Pg 410-412

#1, 2, 9, 12, 13, 14, 15, 16, 17, **18, 19**