Warm-up 4/24

- Black coffee has a pH of 5 and toothpaste has a pH of 8. Identify which is more acidic **and** deduce how many times the [H⁺] is greater in the more acidic product. (2)
- 2. A student has equal volumes of 1.0 mol dm⁻³ sodium hydroxide and ammonia solutions.

Which statement about the solutions is correct?

A. Sodium hydroxide has a lower electrical conductivity than ammonia.

B. Sodium hydroxide has a higher hydrogen ion concentration than ammonia.

C. Sodium hydroxide has a higher pH than ammonia.

D. Sodium hydroxide has a higher hydroxide ion concentration than ammonia.

18.1 Lewis Acids and Bases

- Definitions?
 - Lewis Acid = lone pair acceptor
 - Lewis Base = lone pair donor

- Use curly arrows to show Lewis Acid/Base Reaction between Ammonia and Boron trifluoride.
 - Type of bonding?

Other applications of Lewis Acids and Bases

- Formation of complex ions.
 - EX: Co²⁺ + 6 H₂O

- Nucleophiles in SN reactions = Lewis _____
- Electrophiles (addition reactions) = Lewis _____

18.2 CALCULATIONS INVOLVING ACIDS AND BASES

Write the equilibrium equation for the dissociation of water:

 $H_2O_{(I)} \longrightarrow H^+_{(aq)} + OH^-_{(aq)} \Delta H = + 57 \text{ kJ/mol}$ $K_c = ?$

 K_w = dissociation constant of this equation At 298K: [OH-] = [H+] = 1.00 x 10⁻⁷ units? K_w = (1.00 x 10⁻⁷) x (1.00 x 10⁻⁷) = **1.00 x 10⁻¹⁴**

• @ 298K: [H⁺] x [OH⁻] = 10⁻¹⁴ pH + pOH = pK_w = 14

- $pK_b = -logK_b$
- $pK_a = -logK_a$
- $pK_w = -logK_w$
- pOH = -log [OH⁻]

 $[OH^{-}] = 10^{-pOH}$

 $K_{w} = 10^{-pKw}$

 $K_{a} = 10^{-pKa}$

 $K_{b} = 10^{-pKb}$

• pH = -log [H⁺]
[H⁺] = 10^{-pH}

What happens as temperature increases?

- Higher temperature = shifts to right
- More H+
- Lower pH

Ex: 50°C [H+] = [OH-] = 3.05 x 10⁻⁷

Decrease in temperature?

$$H_2O_{(I)} \longrightarrow H^+_{(aq)} + OH^-_{(aq)} \Delta H = + 57 \text{ kJ/mol}$$

Pure water at 50°C

• 50°C [H+] = [OH-] = 3.05 x 10⁻⁷

pH of 7 is neutral for a pure water solution only at 25°C!

- pH = ?
- 6.5
- But this is pure water....What is this telling us about acidity basicity?

Neutral solutions?

- [H+] = [OH-]
- Acidic: [H+] > [OH-]
- Basic: [H+] < [OH-]

• $K_w = 5.48 \times 10^{-14} M^2 @ 50^{\circ}C$

Find: [H+]

[OH-]

рΗ

рОН

• At 298K: [H+] = 0.001M

Find:

- pH
- pOH
- [OH-]

Book Problems-To Be Turned in

• Pg. 410-412

7, 11

Grey Textbook problems

Warm-up 4/26

Determine the pH of the solution resulting when 100 cm³ of 0.50 mol dm⁻³ HCl(aq) is mixed with 200 cm³ of 0.10 mol dm⁻³ NaOH(aq). (5 pts)

•
$$n(\text{HCI}) = (0.100 \times 0.50) = 0.050 \text{ (mol)};$$

 $n(\text{NaOH}) = (0.200 \times 0.10) = 0.020 \text{ (mol)};$
 $n(\text{HCI})_{\text{remaining}} = (0.050 - 0.020) = 0.030 \text{ (mol)};$
 $[\text{HCI}] = = 0.10 \text{ (mol dm}^{-3});$
 $pH = 1.0; 5$
Award **[2 max]** for just $pH = 1.0$ without working.

HW Problems

•Energy Quiz Revisions (for both)

•UNdroppable UNLESS you complete revisions/talk with me about understanding the material

Important Note

• Value of K_w at different temperatures are given in Data booklet (Table 23).

18.1.4 Weak Acids and Bases

State an equation of any weak acid or base in water.

Weak Acid:

$$HA_{(aq)} \longrightarrow H^+(aq) + A^-(aq)$$

 $K_a = [H+][A-]/[HA]$

How does K_a relate to strength?

Ethanoic Acid

- Write the equation and K_a expression for ethanoic acid in an aqueous solution.

- Ka = 1.74 x 10⁻⁵ mol dm⁻³
 - Does K_a change with temperature?
- pK_a = -logK_a • 4.76
- Similar relationship as pH and concentration.
- Larger Ka = stronger acid
- Smaller pKa = stronger acid

Weak Bases

- Always need to show with water in the equation (but not Kc expression)
- $B + H_2O \implies BH^+ + OH^-$
- Write the K_b expression
- Write the equation for NH_3 in water.
- Write the K_b expression for this reaction.
- Strong bases = large K_b , small pK_b

18.1.5-solving problems

• $K_a \times K_b = K_w$ *Works for conjugate acid/base pairs

- Why? Derivation
- Write out K_a and K_b expressions for the dissociations of generic weak acid (HA) and weak base (A⁻)

• Remember pKa + pKb = pKw = 14 @ 298K

- Calculate the base dissociation constant K_b at 298 K for a 0.00100 M solution of the base 1-phenylmethanamine. The pH of the solution is 10.17.
 - Also: Draw the molecular structure of this base

• The K_a for the acid HX is 0.01. Find K_b for the conjugate base, X⁻ (@298K).

- What is the value of pK_b for:
- $CH_3COO^- + H_2O \iff CH_3COOH + OH^-$

- Ammonia $pK_b = 4.75$
- Methylamine $pK_b = 3.34$
- Which conjugate acid of the above base is the strongest?
- Show its dissociation in water and give a value for pKa.

Determining relative strengths

 1) Complete the following table 2)Rank these 1 M acids, weakest 1st

	рКа	Ka	рН	[H+]
HA	4			
HB		10 ⁻⁶		
HC			4	
HD				10 ⁻⁵

Rank these bases, weakest first

	pKb	Kb
methylamine	3.34	
dimethylamine	3.27	
Trimethylamine	4.20	

Explain this trend, discussing relative dissociation of these bases

Bookwork – alternative text

- All of them are highly recommended.
- 8-10 if nothing else!